
Software Engineering

and Architecture

Observer Pattern

The ‘notification’ pattern



Notifications

• A recurring task

– When some object’s state change, then notify those who 

subscribe/need to know

• Examples

– The BrightSpace forum/discussions

– SoMe notifications

AU CS Henrik Bærbak Christensen 2



Reflecting State Changes

AU CS Henrik Bærbak Christensen 3

Selected object’s state is 
shown 4 different places on 

the UI.
All update concurrently so 

they all are correct.



And Tons of it…

AU CS Henrik Bærbak Christensen 4



Original Problem

• Challenge when graphical screens were invented: 

– writing programs with a graphical user interface

– multiple open windows showing the same data – keeping them 

consistent

AU CS Henrik Bærbak Christensen 5

Xerox Parc in the 1980ies



The Observer Pattern



Observer

• Intent

– Define a one-to-many dependency between objects so that when 

one object changes state, all its dependents are notified and 

updated automatically.

• Example

– Spawning pool’s health

increases

– 4 UI elements are notified

and can update accordingly

CS@AU Henrik Bærbak Christensen 7

pool.deltaHealth(+4)



3-1-2

• Our 3-1-2 process?

– Goal: Keeping multiple (visual) objects 

updated (consistent) when state changes

• Analysis:

– Data is shared but visualization is variable!

–  Data visualization is variable behavior

–  Responsibility to visualize/update data is 

expressed in interface: Observer

–  Instead of data object itself is responsible 

for updating graphics it lets someone else do 

the job: the Observers

AU CS Henrik Bærbak Christensen 8

<<interface>>

Observer

update()

DataObject(s)

*

Observer A
Observer B



Observer: Structure

CS@AU Henrik Bærbak Christensen 9



The Roles

• Subject / or Observable

• Observer / or Listener

AU CS Henrik Bærbak Christensen 10



Observer Protocol

• Protocol:

• A convention detailing the expected sequence of 

interactions or actions expected by a set of roles.

CS@AU Henrik Bærbak Christensen 11



That is

• When a state change happens in Subject

– Then it loops over all registered Observers

– … and for each

• … calls its update() method (= the notification)

AU CS Henrik Bærbak Christensen 12



Exercise

• Objects

– The spawning pool

– The detail map

– The overview map

– The object detail UI

– The object command UI

• Which are subject(s)?

• Which are observer(s)?

AU CS Henrik Bærbak Christensen 13

pool.deltaHealth(+4)



Observer

• Benefits
• open ended number of viewer types (run-time binding)

• need not be known at develop time 

– change by addition, not by modification...

• any number of views open at the same time when executing

• all guarantied to be synchronized

– (if responding correctly to their ‘update()’ calls)

• Liabilities
• update sequence can become cyclic or costly to maintain

CS@AU Henrik Bærbak Christensen 14



Push / Pull Variants

• Observer is implemented in two variants

– Pull variant

• Update() method with no parameters/state details

– Observer needs to ‘pull’ the relevant information

– Push variant

• Update(….) method(s) with parameters/details about state change

– Often in the form of a specific event class

– Relevant information is ‘pushed’ to observer

• Exercise:

– What is benefits of each?

• Hint: Consider a subject with 56 different independent state 

changes?

AU CS Henrik Bærbak Christensen 15

Predominant 
variant today



Observer Terminology

• Observer pattern is used in so many places that a special 

vocabulary is often used, as well as naming conventions 

on the methods.

– Observer often called Listeners (Java/Swing)

• ‘I listen to the events that occur in the “subject”’

– Observer methods often called Callback functions

– The subject emits Events

• ‘I did this state change’

CS@AU Henrik Bærbak Christensen 16



Observer Terminology

• Observer pattern is used in so many places that a special 

vocabulary is often used, as well as naming conventions 

on the methods.

– The methods that receives the events are often named ‘onX()’

• In the Observer/Listener class

– The methods emitting the events

are often named ‘notifyX()’

• In the Subject class

CS@AU Henrik Bærbak Christensen 17

Example: Android



Mandatory Note

• It is quite easy to encode a new hero power ala

– … US Chef, that adds +7 health to all own minions, whose health 

is below 3 and whose names begins with a consonant…

• But, how do we update all the right elements of the UI, 

without redrawing everything from scratch all the time???

• Answer: 

– Let Game emit Events for every detailed state change

• A card has been played; hero has been attacked; card drawn; …

– Let the UI listen for these events

• And update the corresponding UI element accordingly

AU CS Henrik Bærbak Christensen 18



Mandatory Note

• Let Game emit Events for every state change

• US Chef Hero power used in a Game
– adds +7 health to all own minions, whose health is below 3 and whose names begins with a consonant

• First onHeroUpdate() event emitted (argue why)

– Update the Hero Graphics on the UI

• Next a series of onCardUpdate() events emitted, one for each 

affected card

– Update the UI representations of those minions (only)

AU CS Henrik Bærbak Christensen 19



Mandatory Note

• The UI is then a listener on the game events

• And implement the onXEvent() methods ala

AU CS Henrik Bærbak Christensen 20



Mandatory Pitfall

• Intent

– Define a one-to-many dependency between objects so that when 

one object changes state, all its dependents are notified and 

updated automatically.

• Exercise

– Can there ever be fired an update event when an accessor 

method has been called on the Subject?

• Morale:

– All notifyX() calls are always in (exercise solution) methods!

AU CS Henrik Bærbak Christensen 21



WarStory

• A previous SWEA student group had

– notifyGameWon()

• Called in their game’s getWinner() method

• Which means

– UI is notified, which called… (guess)

• What was their problem?

AU CS Henrik Bærbak Christensen 22



Summary

• Intent

– Define a one-to-many dependency between objects so that when 

one object changes state, all its dependents are notified and 

updated automatically.

CS@AU Henrik Bærbak Christensen 23



And Sidebar

• No, neither LoL nor StarCraft II uses the observer pattern 

for UI updates…

• GameEngine architecture

– Loop 60+ times a second

• Redraw every visible element from a scratch based upon the 

state in the underlying game model

• No wonder we need 

hefty graphics cards 

AU CS Henrik Bærbak Christensen 24


