/v

AARHUS UNIVERSITET

Software Engineering
and Architecture

Observer Pattern
The ‘notification’ pattern

/v Notifications

AARHUS UNIVERSITET

* Arecurring task

— When some object’s state change, then notify those who
subscribe/need to know

« Examples
— The BrightSpace forum/discussions

1 12-08-2023 15:02
noreply@mail.brightspace.au.dk
replied to Studie café

_ SO M e n Otlfl Ca.tl O nS To Henrik Beerbak Christensen

facebook

A6 C

AU CS Henrik Baerbak Christensen 2

/v Reflecting State Changes

AARHUS UNIVERSITET

Selected object’s state is
shown 4 different places on
the UL.

All update concurrently so
they all are correct.

-

Spawning Pool

Henrik Baerbak Christensen

b And Tons of it...

AARHUS UNIVERSITET

“"\ 47 g 3 [L 23 £3 3 988 149 | 22:12
¢ = -‘yiy ; == =

e 28 N
¥3° You haveslain an enemy!l &
N S

&

T 4

12 BEnERREREREE

+20

o ’ 1
s !
S Lgvel Up.

[20:41] Taunty
[20:47] Jayhua (Th
[20:52]

[20:56] I (Aatrox) signals that enemies are missing
[21:18] -) is on the way

[21:38]

[22:05]

[22:05] S

esh) purchased Frozen Heart

|17

Henrik Baerbak Christensen

/v

AARHUS UNIVERSITET
« Challenge when graphical

Original Problem

screens were invented:

— writing programs with a graphical user interface
— multiple open windows showing the same data — keeping them

consistent

£ Create; move, and .5 - Use the mouse |- o] x

Tool
O

AU CS Henrik Baerbak Christensen

|| Extra View EE-E |

Xerox Parc in the 1980ies

/v

AARHUS UNIVERSITET

The Observer Pattern

VeV Observer

AARHUS UNIVERSITET

 |ntent

— Define a one-to-many dependency between objects so that when
one object changes state, all its dependents are notified and
updated automatically.

« Example

— Spawning pool’s health
Increases

— 4 Ul elements are notified
and can update accordingly

CS@AU Henrik Baerbak Christensen 7

/ \ 4 3-1-2
AARHUS UNIVERSITET
 Qur 3-1-2 process?

— Goal: Keeping multiple (visual) objects .

updated (consistent) when state changes DataObject(s)
« Analysis:

— Data is shared but visualization is variable! <<interfacess

— ® Data visualization is variable behavior Observer

— @ Responsibility to visualize/update data is update()
expressed in interface: Observer

— @ Instead of data object itself is responsible ob 5
for updating graphics it lets someone else do Observer A Server

the job: the Observers

AU CS Henrik Baerbak Christensen 8

VeV Observer: Structure

AARHUS UNIVERSITET
Structure:
Subject
«interface»
addObserver(Observer) * Observer
removeObserver(Observer)
setState(newState) update()
getState()
notifyOhservers()
|
|
| i
for all o : observers { l
o.update();
} ConcreteObserver

CS@AU Henrik Baerbak Christensen 9

eV The Roles

AARHUS UNIVERSITET
 Subject/ or Observable
Subject

e Must handle storage, access, and manipulation of state
e Must maintain a set of observers and allow adding and removing ob-

servers to this set

each observer’s update method

e Must notify every observer in the set of any state change by ilwoking

« Observer/ or Listener

Observer

e Must register itself in the subject
e Must react and process subject state changes every time a notification

arrives from the subiject, that is, the update method is invoked

AU CS Henrik Baerbak Christensen

10

/v

AARHUS UNIVERSITET

Protocol:

« A convention detailing the expected seguence of
Interactions or actions expected by a set of roles.

Observer Protocol

s: ConcreteSubject

o1:ConcreteObserver

o02:ConcreteObserver

I
registration| J

| addObserver(this)j

I

addObserver(this) j

T
loop !

setState()

[

|

|

|

|

|
-

— notify
.‘—n

update()

7

getState()

-

-.,..

interact()

getState()

e
update() J

CS@AU

Henrik Baerbak Christensen

11

/v

AARHUS UNIVERSITET

 When a state change happens in Subject
— Then it loops over all registered Observers

— ... and for each
... calls its update() method (= the notification)

AU CS

That Is

s: ConcreteSubject

o1:ConcreteCbserver

o2:ConcreteObserver

[
registration| J

T
I
addObserver(this) j

7 addObserver(this) j
|
I

J |

I
loop | setState() JI_..‘ ®
= interact()
notify
< |

update()

getState()

-

7

A §

update() J
getState()

Henrik Baerbak Christensen

12

/v

AARHUS UNIVERSITET
* Objects

 Which are subject(s)?

 Which are observer(s)?

AU CS

The spawning pool

The detail map

The overview map

The object detail Ul
The object command Ul

Henrik Baerbak Christensen

Exercise

13

Vav Observer

AARHUS UNIVERSITET

* Benefits
« open ended number of viewer types (run-time binding)

* need not be known at develop time
— change by addition, not by modification...

« any number of views open at the same time when executing

« all guarantied to be synchronized
— (if responding correctly to their ‘update()’ calls)

« Liabilities
* update sequence can become cyclic or costly to maintain

/v Push / Pull Variants

AARHUS UNIVERSITET

* Observer is implemented in two variants

— Pull variant

« Update() method with no parameters/state details
— Observer needs to ‘pull’ the relevant information

— Push variant
« Update(....) method(s) with parameters/details about state change

— Often in the form of a specific event class - o
— Relevant information is ‘pushed’ to observer Predoming
' variant today
 EXercise:

— What is benefits of each?

* Hint: Consider a subject with 56 different independent state
changes?

AU CS Henrik Baerbak Christensen 15

/v Observer Terminology

AARHUS UNIVERSITET

* Observer pattern is used in so many places that a special
vocabulary is often used, as well as naming conventions
on the methods.

— Observer often called Listeners (Java/Swing)
‘| listen to the events that occur in the “subject™
— Observer methods often called Callback functions

JButton okButton = new JBuitgono

new Actionlistener(
| (ActionEvent e)

— The Subject emits Events statuslabel.setText("Ok DurLe red here™);
o , }
‘| did this state change’),

Pl [

okButton.addActionlListener

public void actionPerforme

CS@AU Henrik Baerbak Christensen 16

/v Observer Terminology

AARHUS UNIVERSITET

* Observer pattern is used in so many places that a special
vocabulary is often used, as well as naming conventions
on the methods.

— The methods that receives the events are often named ‘onX()’
* In the Observer/Listener class

— The methods emitting the events LocationListener | Example: Android |

are Often nam ed ‘n O t I fyX(), The LocationListener interface, which is part of the Android Locations API

is used for receiving notifications from the LocationManager when the
location has changed. The LocationManager class provides access to the

° In the Su bJeCt ClaSS systems location services. The LocationListener class needs to implement

« onLocationChanged(Location location) : Called@vhen the location
has changed.

« onProviderDisabled(String provider) : Called wigen the provider is
disabled by the user.

« onProviderEnabled(String provider) : Called whiin the provider is
enabled by the user.

« onStatusChanged(String provider, int status, Bfndle extras) : Called

when the provider status changes.

public woid notifyPlayCard(Player who, Card card) {

CS@AU Henrik Baerbak Christensen 17

/v Mandatory Note

AARHUS UNIVERSITET

« Itis quite easy to encode a new hero power ala
— ... US Chef, that adds +7 health to all own minions, whose health
Is below 3 and whose names begins with a consonant...
- But, how do we update all the right elements of the U,
without redrawing everything from scratch all the time???

 Answer:
— Let Game emit Events for every detailed state change
» A card has been played; hero has been attacked; card drawn; ...

— Let the Ul listen for these events
 And update the corresponding Ul element accordingly

/v Mandatory Note

AARHUS UNIVERSITET
 Let Game emit Events for every state change

pubklic interface GameCbhserver {
void onPlayCard (Player who, Card card, int atIndex):
volid onChangeTurnTo (Player playerBecomingActiwve):
volid onAttackCard(Player playverfttacking, Card attackingCard, Card defendingCard);
vold onAttackHero(FPlayer playerAttacking, Card attackingCard) ;
vold onlUsePower (Playver who) .,
vold onCardDraw (Player who, Card drawnCard):
vold onCardUpdate (Card card):
volid onCardRemowve (Player who, Card card):
void onHeroUpdate (Player who):
vold onGameWon (Player playerWinning) .,

« US Chef Hero power used in a Game

— adds +7 health to all own minions, whose health is below 3 and whose names begins with a consonant
» First onHeroUpdate() event emitted (argue why)
— Update the Hero Graphics on the Ul
* Next a series of onCardUpdate() events emitted, one for each
affected card

— Update the Ul representations of those minions (only)
AU CS Henrik Baerbak Christensen

19

/v Mandatory Note

AARHUS UNIVERSITET
« The Ul is then a listener on the game events

public class HotStoneDrawingSolution implements Drawing,[GameUbserver]{

« And implement the onXEvent() methods ala

public wvoid onCardUpdate(Card card) {

HotStoneActorFigure actor = actorMap.get(card);
if (actor != null) {
actor.updateStats();

I
F

AU CS Henrik Baerbak Christensen 20

Y Mandatory Pitfall

AARHUS UNIVERSITET

 |ntent

— Define a one-to-many dependency between objects so that when
one object changes state, all its dependents are notified and
updated automatically.

« Exercise

— Can there ever be fired an update event when an accessor
method has been called on the Subject?

AU CS Henrik Baerbak Christensen 21

/v WarStory

AARHUS UNIVERSITET

* A previous SWEA student group had
— notifyGameWon()

« Called in their game’s getWinner() method

* Which means
— Ul is notified, which called... (guess)

« What was their problem?

o Summary

AARHUS UNIVERSITET

 |ntent

— Define a one-to-many dependency between objects so that when
one object changes state, all its dependents are notified and
updated automatically.

s: ConcreteSubject o1:ConcreteChserver o02:ConcreteObserver

I u i

- registration| ' '
Subject 4 addObserver{lhis)j i
I

[

Structure:

- I
«interface»

addObserver(Observer) * ob .
removeObserver(Observer) server I addObserver(this)
setState(newState) update() !
getState()) I
notifyOlservers() i ;
S ! loop | setState() i Y
! = interact()
| notify
! -—

update()

[getState() B
update() J
getState() i

CS@AU Henrik Baerbak Christensen 23

|
|
|
|
|
|
|
|
ConcreteObserver I
|
|
|

for all o : observers {
o.update();
}

2

A §

VeV And Sidebar

AARHUS UNIVERSITET

* No, neither LoL nor StarCraft Il uses the observer pattern
for Ul updates...

« GameEngine architecture

— Loop 60+ times a second

* Redraw every visible element from a scratch based upon the
state in the underlying game model

 No wonder we need
hefty graphics cards ©

AU CS Henrik Baerbak Christensen 24

